O.P.Code: 16EC415

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations June-2024

ANALOG COMMUNICATIONS

т	im	(Electronics and Communication Engineering) e: 3 Hours	7.5		
•	1111	(Answer all Five Units $5 \times 12 = 60$ Marks)	Maz	k. Ma	rks: 60
		UNIT-I			
1	a	Explain the function of each block of communication system.	CO1	L2	6M
	b	With the help of circuit diagram explain the operation of square-law	CO1	L2	6M
		diode modulator & demodulator for AM.			
		OR			
2	a	Draw the frequency spectrum of DSB-SC modulation with necessary	CO ₁	L6	6M
		mathematical expressions.			
	b	The total power content of AM signal is 1kW.Determine the power	CO1	L3	6M
		being transmitted at the carrier frequency and each of the sidebands			
		when the %modulation is 100.			
		UNIT-II			
3	a	Explain the functionality of each block of phase shift discriminator.	CO ₂	L2	6M
	b	A single-tone FM is represented by the voltage equation as: $v(t) = 12\cos^2 t$	CO ₂	L4	6M
		(6×106t + 5sin 1250t) Determine the following:			
		(i) Carrier frequency (ii) Modulating frequency (iii) Modulation index			
		(iv) What power will this FM wave dissipate in 10Ω resistors?			
		OR			
4	a	Explain the generation of FM using direct method.	CO ₂	L2	6M
	b	A 20 MHz carrier is frequency modulated by a sinusoidal signal such	CO ₂	L2	6M
		that the peak frequency deviation is 100 kHz. Determine the modulation			
		index and the approximate bandwidth of the FM signal if the frequency			
		of the modulating signal is: (i) 1 kHz (ii) 15 kHz			
		UNIT-III			
5	a	What is meant by narrow band noise and explain time domain	CO3	L1	6M
		representation of narrow-band noise.			
	b	Describe thermal noise and shot noise.	CO ₃	L3	6M
		OR			
6	a	Calculate the noise figure for an SSB-SC system.	CO ₃	L3	6M
	b	Calculate thermal noise power available from any resistor at room	CO ₃	L2	6M
		temperature 290K for a bandwidth of 2MHz and also calculate noise			
		voltage at 100Ω resistor.			
		UNIT-IV			
7	a	F	CO4	L1	6M
	b	Explain the generation of PAM with mathematical analysis.	CO 4	L2	6M
		OR			
8	a	With block diagram explain the generation of PWM signals.	CO ₄	L2	6M
	b	What are the differences between PAM,PWM and PPM?	CO ₄	L4	6M

IINIT-V
OT THE T

9	a	Explain about Frequency Division Multiplexing	CO ₅	L2	6M
	b	Compare TDM and FDM techniques.	CO ₅	L4	6M
		OR			
10	a	Explain Entropy, Information rate, Channel capacity theorem, Mutual information.	CO5	L5	6M
	b	Write a short note on channel capacity of a Discrete memory less channel.	CO5	L2	6M
		de de de TOTATO			

*** END ***